Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(23): 42663-42677, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366716

RESUMO

Conventional photon detectors necessarily face critical challenges regarding strong wavelength-selective response and narrow spectral bandwidth, which are undesirable for spectroscopic applications requiring a wide spectral range. With this perspective, herein, we overcome these challenges through a free-carrier absorption-based waveguide-integrated bolometer for infrared spectroscopic sensors on a silicon-on-insulator (SOI) platform featuring a spectrally flat response at near-infrared (NIR) range (1520-1620 nm). An in-depth thermal analysis was conducted with a systematic investigation of geometry dependence on the detectors. We achieved great performances: temperature coefficient of resistance (TCR) of -3.786%/K and sensitivity of -26.75%/mW with a low wavelength dependency, which are record-high values among reported waveguide bolometers so far, to our knowledge. In addition, a clear on-off response with the rise/fall time of 24.2/29.2 µs and a 3-dB roll-off frequency of ∼22 kHz were obtained, sufficient for a wide range of sensing applications. Together with the possibility of expanding an operation range to the mid-infrared (MIR) band, as well as simplicity in the detector architecture, our work here presents a novel strategy for integrated photodetectors covering NIR to MIR at room temperature for the development of the future silicon photonic sensors with ultrawide spectral bandwidth.

2.
Opt Express ; 29(12): 18037-18058, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154072

RESUMO

In this paper, we systematically investigated tailoring bolometric properties of a proposed heat-sensitive TiOx/Ti/TiOx tri-layer film for a waveguide-based bolometer, which can play a significant role as an on-chip detector operating in the mid-infrared wavelength range for the integrated optical gas sensors on Ge-on-insulator (Ge-OI) platform. As a proof-of-concept, bolometric test devices with a TiOx single-layer and TiOx/Ti/TiOx tri-layer films were fabricated by varying the layer thickness and thermal treatment condition. Comprehensive characterization was examined by the scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses in the prepared films to fully understand the microstructure and interfacial properties and the effects of thermal treatment. Quantitative measurements of the temperature- and time-dependent resistance variations were conducted to deduce the minimum detectable change in temperature (ΔTmin) of the prepared films. Furthermore, based on these experimentally obtained results, limit-of-detection (LoD) for the carbon dioxide gas sensing was estimated to demonstrate the feasibility of the proposed waveguide-based bolometer with the TiOx/Ti/TiOx tri-layer film as an on-chip detector on the Ge-OI platform. It was found that the LoD can reach ∼3.25 ppm and/or even lower with the ΔTmin of 11.64 mK in the device with the TiOx/Ti/TiOx (47/6/47 nm) tri-layer film vacuum-annealed at 400 °C for 15 min, which shows great enhancement of ∼7.7 times lower value compared to the best case of TiOx single-layer films. Our theoretical and experimental demonstration for tailoring bolometric properties of a TiOx/Ti/TiOx tri-layer film provides fairly useful insight on how to improve LoD in the integrated optical gas sensor with the bolometer as an on-chip detector.

3.
Small ; 17(17): e2007357, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33733586

RESUMO

A high-speed and broadband 5 × 5 photodetector array based on MoS2 /In0.53 Ga0.47 As heterojunction is successfully demonstrated to take full advantage of the type-II band-aligned multilayer MoS2 /In0.53 Ga0.47 As. The fabricated devices exhibit good uniformity in the Raman spectrum and clear rectifying characteristics. The fabricated MoS2 /In0.53 Ga0.47 As photodetectors show good optical performances at a broad wavelength range showing high responsivities corresponding to the detectivity of ≈1010 Jones at -3 V for the incident broadband light from 400 to 1550 nm. A very fast photoresponse is also obtained with a small rise/fall time in the order of microseconds both for visible (638 nm) and shortwave infrared (1310 nm). Finally, the image scanning properties of MoS2 /In0.53 Ga0.47 As devices are demonstrated for visible and infrared light, indicating that the suggested device is one of the promising options for future broadband imager, which can be integrated on the focal plane arrays (FPAs).

4.
Sci Rep ; 9(1): 16915, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729449

RESUMO

Terahertz near-field microscopy (THz-NFM) could locally probe low-energy molecular vibration dynamics below diffraction limits, showing promise to decipher intermolecular interactions of biomolecules and quantum matters with unique THz vibrational fingerprints. However, its realization has been impeded by low spatial and spectral resolutions and lack of theoretical models to quantitatively analyze near-field imaging. Here, we show that THz scattering-type scanning near-field optical microscopy (THz s-SNOM) with a theoretical model can quantitatively measure and image such low-energy molecular interactions, permitting computed spectroscopic near-field mapping of THz molecular resonance spectra. Using crystalline-lactose stereo-isomer (anomer) mixtures (i.e., α-lactose (≥95%, w/w) and ß-lactose (≤4%, w/w)), THz s-SNOM resolved local intermolecular vibrations of both anomers with enhanced spatial and spectral resolutions, yielding strong resonances to decipher conformational fingerprint of the trace ß-anomer impurity. Its estimated sensitivity was ~0.147 attomoles in ~8 × 10-4 µm3 interaction volume. Our THz s-SNOM platform offers a new path for ultrasensitive molecular fingerprinting of complex mixtures of biomolecules or organic crystals with markedly enhanced spatio-spectral resolutions. This could open up significant possibilities of THz technology in many fields, including biology, chemistry and condensed matter physics as well as semiconductor industries where accurate quantitative mappings of trace isomer impurities are critical but still challenging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...